Демонстрационная схема со светодиодами, созданная бельгийцами, не только не боится воды, но позволяет вытягивать себя, словно жевательная резинка (фото TFCG Microsystems Lab-Ghent University). |
Увы, до сих пор растяжимой электроники мир не видел, хотя примеров гибких схем было предостаточно.
Это своего рода новое измерение гибкости и открыли бельгийские учёные из Межуниверситетского центра микроэлектроники (Interuniversity Microelectronics Centre) и лаборатории микросистем группы тонкоплёночных компонентов университета Гента (TFCG Microsystems Lab): Доменик Бросто (Dominique Brosteaux), Фабрис Аксиза (Fabrice Axisa), Ева Де Лирснайдер (Eva De Leersnyder), Фредерик Боссейт (Frederick Bossuyt), Марио Гонсалес (Mario Gonzalez) и Ян Ванфлетерен (Jan Vanfleteren).
Сетка из растяжимых проводников, соединяющих чипы в узлах, позволит растягивать и скручивать готовое изделие почти любым образом (иллюстрация TFCG Microsystems Lab-Ghent University). |
Мы уже не удивляемся экспериментальным микросхемам и дисплеям, которые можно сгибать как тонкий лист пластика. Только при попытке сколь-нибудь заметно растянуть их в стороны, такие схемы будут неизбежно повреждены. А вот компоненты схем, образцы которых создали в Бельгии, будут работать как ни в чём не бывало.
Впечатляет в этой новинке даже не сама эластичность, а её величина. Опытные устройства, созданные в Генте, показали растяжимость в 50%, а иные даже достигли без проблем показателя более 100%, то есть позволили вытягивать себя более чем вдвое от первоначальной длины.
Меандры из очень тонких проводков в свободном и растянутом состоянии. Их подковообразная форма была выбрана после ряда опытов и, как утверждают исследователи, позволяет минимизировать механическое напряжение (фото TFCG Microsystems Lab-Ghent University). |
Вспомните, какой жёсткой и твёрдой является сталь. Но стоит из неё свить пружину, как получается упругий элемент, способный существенно менять свою длину. В новой технологии использован схожий принцип, только "пружины" не трёхмерные, а плоские.
Основой для эластичной электроники служат тонкие полоски силикона (точнее — полидиметилсилоксана). В их толщу исследователи имплантировали проводки из золота толщиной всего 4 микрометра, покрытого (для обеспечения лучшей спайки контактов) слоем никеля толщиной 2 микрометра.
Полоска со светодиодами при большем увеличении — виден узор из проводников. Внизу: эластичный электронный градусник (фотографии TFCG Microsystems Lab-Ghent University). |
Течение тока в растянутом устройстве нисколько не прерывается. Даже электрическое сопротивление проводов меняется не более чем на 5%.
Авторы изобретения утверждают, что тонкие полоски силикона служат одновременно и изолятором (устройства можно окунать в воду), и заодно заменяют собой монтажную плату.
Силиконовую "плату" предложено формировать в точном соответствии с будущим наполнением, то есть — жёсткими деталями устройства (иллюстрация TFCG Microsystems Lab-Ghent University). |
Легко представить, как прямоугольная сетка подобных "резиновых" соединений может быть встроена в большой тонкий лист силикона или схожего упругого материала. В каждом узле такой сетки может располагаться по микросхеме или датчику.
Причём авторы предусмотрели в своей технологии "принцип формовки". Заключается он в следующем. Когда изготавливается силиконовая основа для устройства, отмечаются участки, где в дальнейшем будут встроены твёрдые компоненты (чипы, батарейки).
Так может выглядеть многослойное гибкое устройство BioFlex. Синим цветом показан чип, жёлтым — проводники, сопротивления, излучатель и конденсатор, зелёным — датчик (иллюстрация с сайта elis.ugent.be). |
Первые образцы эластичной электроники имеют длину (и ширину) порядка нескольких сантиметров.
Бельгийцы изготовили медицинский термометр, который можно закреплять на лбу пациента как эластичную повязку, растяжимую водонепроницаемую схему с набором светодиодов (они ничего особенного не делают, просто демонстрируют возможности технологии) и ещё — водонепроницаемую катушку индуктивности со светодиодом.
Катушка воспринимает энергию от внешнего излучателя, скажем, через воду (ткани организма, одежду и тому подобное). Разные сферы применения такой дистанционной подпитки устройства нетрудно представить в области медицинской техники.
Принцип Stretchable electronics должен быть распространён на три родственных проекта (выполняемых сейчас университетом Гента в содружестве с рядом других научных организаций), или в три группы устройств: это уже не первый год развиваемый BioFlex (Biocompatible Flexible Electronic Circuits — биологически совместимые гибкие электронные схемы) и более свежие STELLA (Stretchable Electronics for Large Area Applications — эластичная электроника для широкой сферы применения) и SWEET (Stretchable and Washable Electronics for Embedding in Textiles — эластичная и водостойкая электроника для встраивания в текстиль).
Заметим, способность спокойно переносить воздействие воды окажется полезной не только в электронике для одежды (которую можно будет запихивать в стиральную машину), но и в медицинских аппаратах, которые необходимо стерилизовать перед повторным применением.
В настоящее время бельгийские новаторы проектируют целую линейку устройств, выполненных по технологии Stretchable electronics. В ближайшее время они обещают показать публике растягиваемые электронные часы, нагреватель, антенны и даже волноводы.
Хотите прокомментировать?
Кроме того...
Закладка для чтения в темноте
Для тех, кто любит читать по ночам или в мало освещённых...
Амфибия Rinspeed sQuba
В 2008 году швейцарцы планируют поразить посетителей автосалона своим новым...
Шоковая заморозка продуктов
В 1930-х годах свежезамороженные продукты считались элитными...