Квантовый ликбез

Время от времени исследовательские центры сообщают о теоретических и практических успехах на пути к созданию квантового компьютера. Но что такое квант, зачем он нужен, и как из него сделать компьютер?
Классический и квантовый регистры. Квантовый находится в суперпозиции всех возможных состояний. Иллюстрация Wikimedia Commons.
Классический и квантовый регистры. Квантовый находится в суперпозиции всех возможных состояний. Иллюстрация Wikimedia Commons.
Микромир - атомы, электроны, фотоны и другие частицы - живет по особым законам. Там не просто все очень маленькое, там все совсем другое, и многие явления микромира не имеют аналогов в привычном нам макромире, из-за чего кажутся фантастическими.

В классической физике величины могут изменяться равномерно и непрерывно, принимая любые значения. Физика микромира дискретна: у величин есть ряд фиксированных значений, которые они могут принимать. Если пытаться вообразить такую ситуацию в макромире, то можно представить, например, что предметы имеют температуру, которая выражается только целым числом градусов. То есть 10, 20, 31, 36 градусов - может быть, а вот 36,6 - просто невозможно. Нагревать и охлаждать предметы можно, но при этом температура будет скакать туда-сюда сразу на градус. Примерно таким свойством обладают многие характеристики микромира.

В частности, энергия электромагнитного поля излучается только в виде дискретных неделимых порций. Вот такая порция и называется квантом. Предположение о существовании квантов сделал в 1900-1901 годах Макс Планк, положив тем самым начало квантовой теории, квантовой механике и еще много чему с прилагательным квантовый - в том числе и компьютерам.

Другим удивительным свойством фотонов, электронов и иных частиц является то, что они могут проявлять свойства как частиц, так и волн (поэтому мы можем говорить и о том, что свет - это электромагнитная волна, и о частицах света - фотонах). Для математического описания квантового мира физики используют волновые функции, однако в нашем простом комментарии мы их касаться не будем.

Частицы-волны обладают недоступной для макрообъектов способностью "находиться в нескольких местах одновременно". Говоря точнее, описать местонахождение не наблюдаемой непосредственно частицы в некотором месте можно только с некоторой вероятностью.

На наблюдения и измерения в микромире тоже есть существенное ограничение: принцип неопределенности Гейзенберга . Чтобы избежать определения "произведение стандартных отклонений измерений двух сопряженных переменных состояния не может быть меньше константы", популярно его обычно объясняют так: нельзя точно измерить одновременно скорость и координаты частиц. Чем точнее мы измеряем скорость, тем больше будет ошибка в измерении координат, и наоборот.

Пока мы объекты не измеряем, они ведут себя и того хуже. Если квантовая система может находиться в нескольких состояниях и неизвестно, в каком именно она находится, то говорят о суперпозиции состояний. Можно говорить, что неизвестно, в каком состоянии находится система, или что она находится в нескольких состояниях одновременно, это вопрос интерпретации. В любом случае при измерении система выбирает одно из состояний.

Известным наглядным примером является мысленный эксперимент, называемый "кот Шредингера": в закрытый ящик помещены живой кот, емкость с ядовитым газом и радиоактивное ядро. Если ядро распадается, оно приводит в действие механизм, который открывает емкость с газом и тем самым убивает кота. Вероятность того, что ядро распадется за час, - 50 процентов. Через час кот в ящике жив с вероятностью 50 процентов. С точки зрения квантовой механики, пока ящик закрыт, кот находится в суперпозиции двух состояний (то ли жив, то ли мертв; и жив, и мертв; ни жив ни мертв - как угодно). В тот момент, когда наблюдатель открывает ящик, он видит, жив кот или мертв.

Наконец, еще одно важное для нас явление - квантовая запутанность (entanglement), она же спутанность, сцепление, иногда связанность. О запутанности говорят, когда состояние двух (или более) квантовых систем должно описываться во взаимосвязи друг с другом, даже если сами системы разнесены в пространстве. Соответственно, физические свойства каждой из систем связаны с физическими свойствами другой, при том что они могут находиться не рядом и ничем не соединяться.

Если две запутанные системы находится в суперпозиции состояний, то, измерив состояние одной, можно узнать состояние другой. Например, можно запутать два атома, спин (определенная квантовая характеристика) одного из которых будет направлен вверх, а другого - вниз, причем мы не будем знать, у какого атома какой спин. Но измерив спин одного атома, мы тут же узнаем и спин другого, даже если они разнесены в пространстве. Недавно физикам удалось запутать атомы на расстоянии метра друг от друга.

Все эти и многие другие особенности микромира и позволяют построить квантовый компьютер.

Ученые быстро поняли, что рассчитывать напрямую состояние изменяющихся квантовых систем чрезвычайно сложно. Представим себе, что у нас есть система из 30 электронов в ограниченном пространстве, мы знаем все параметры, какие только можем знать, и хотим предсказать, как будет вести себя система в будущем (грубо говоря, какой электрон куда переместится).

Даже имея в своем распоряжении суперкомпьютер, в оперативной памяти которого больше битов, чем атомов в видимой области Вселенной, мы не сможем просчитать будущее системы. Между тем мы можем его выяснить, просто поставив эксперимент (разумеется, одно из возможных - но мы ведь можем поставить эксперимент несколько раз).

В 1980 году советский математик Юрий Манин задумался: а нельзя ли посмотреть на задачу с другой стороны и, раз квантовая система может то, чего не могут наши компьютеры, использовать эти ее возможности с пользой, а именно - заставить ее производить вычисления? Эту идею поддержали физики, в частности, Нобелевский лауреат Ричард Фейнман.

Квантовый ликбез
В 90-е годы были найдены конкретные приложения для теоретической квантовой мощи (см. ниже), а в 2001 - создан первый прототип квантового компьютера.

Как устроен квантовый компьютер

В обычном компьютере информация хранится в битах, которые принимают значения 0 или 1. Ячейками памяти управляет логический вентиль, выполняющий элементарные логические операции.

Ячейкой хранения информации в квантовом компьютере является квантовый бит (quantum bit, qubit) или кубит. Это квантовая частица, которая может иметь два состояния (одно принимается за 0, другое - за 1). Физически кубит может быть устроен по-разному: это может быть атом, имеющий два энергетических состояния (чаще используется квантовая точка, или искусственный атом: маленький фрагмент проводника или полупроводника), атомное ядро или электрон, имеющий два возможных значения спина - вниз и вверх, сверхпроводящее кольцо, в котором ток может течь в двух направлениях, и т.п.

N кубит (по данным словарей, надо говорить пять бит, но много битов, логично склонять кубит так же) могут, как и N бит, иметь 2N возможных состояний, однако принципиальное отличие состоит в том, что кубиты могут находиться в суперпозиции этих состояний и быть при этом запутанными между собой.

Это значит, что система из нескольких кубитов (квантовый регистр) находится в каждом из состояний с некоторой вероятностью, а самое главное, это значит, что за счет запутанности можно изменить сразу все 2N состояний. В классическом компьютере такая операция потребовала бы 2N шагов. Это обеспечивает беспрецедентный параллелизм вычислений, и именно это является основой мощности квантовых компьютеров.

В классическом компьютере за один такт процессор может изменить одно состояние, которое хранят N бит памяти. В квантовом компьютере за один такт можно изменить N кубит, которые находятся в состоянии, являющемся суперпозицией всех базовых состояний, а следовательно, все 2N базовых состояний. Таким образом, квантовый компьютер отчасти является не цифровым, а аналоговым устройством.

Что могут квантовые компьютеры

Пока что самое сложное действие, доступное реально существующим квантовым компьютерам: разработке IBM 2001 года и двум недавним разработкам - это разложение числа 15 на простые множители. Но потенциально они могут гораздо больше. Первый алгоритм для квантовых компьютеров - разложение числа на простые множители - был разработан в 1994 году Питером Шором. Эту задачу умеют решать и классические компьютеры, но времени они на это требуют неизмеримо больше (квантовые же справляются с разложением за время, полиномиальное от раскладываемого числа).

Алгоритм Шора имеет большое значение для современной криптографии. Если удастся создать достаточно мощные квантовые компьютеры, то часть использующихся систем шифрования с открытым ключом (например, RSA) станет уязвима для взлома: для подбора тайного ключа необходимо разложить открытый на простые множители. При достаточно длинном ключе даже современным суперкомпьютерам на это нужны сотни лет, а вот перед квантовыми он не устоит.

Разрабатываются и применения квантовых компьютеров для противоположной задачи: не взлома, а усиления защиты информации.

Еще одним известным алгоритмом является алгоритм Гровера: алгоритм поиска в неструктурированной базе данных.

Итак, квантовый компьютер - это вычислительное устройство, работа которого строится на квантовомеханических эффектах, в частности, на принципе квантовой запутанности, позволяющем реализовать параллелизм вычислений.

Некоторые специалисты сравнивают современное состояние квантовых информационных технологий с уровнем развития классических компьютеров в 1950-е годы, то есть разработчикам квантовых компьютеров предстоит решить еще много теоретических и практических проблем. Есть и мнение, что мощный работающий квантовый компьютер никогда не будет создан. Но даже в этом случае исследования в этом направлении могут привести к неожиданным полезным открытиям, а значит, должны и будут продолжаться.

   
автор: Александр Бердичевский
Кроме того...
Triplex - безопасное стекло
Нам кажется, что они были всегда. Торговые марки, связанные...
  • Текущие обсуждения статей
Бионическая рука-протез
Телепортация - фантастика или реальность?
Ученые вывели формулу удачи
Смех не лечит раковых больных
Приливы и отливы вызывают сейсмические колебания
Нью-Йорк и Лос-Анджелес уйдут под воду к 2015-му году
Посмотреть весь форум

  • поиск статей на сайте
Введите фразу, слово или часть слова
Темы этого номера
Компьютер научит полицию действовать непредсказуемо
Компьютер научит полицию действовать непредсказуемо Компьютер научит полицию действовать непредсказуемо
Полиция Лос-Анджелесского аэропорта начнет проводить патрулирование по схемам, составляемым компьютерной программой
Создана мультиконтактная цифровая доска
Создана мультиконтактная цифровая доска Создана мультиконтактная цифровая доска
Компания Hitachi America анонсировала выход на рынок своей новейшей серии интерактивных досок StarBoard FX Duo
Умный DVD-плеер сможет понимать жесты
Умный DVD-плеер сможет понимать жесты Умный DVD-плеер сможет понимать жесты
Если вам лень подходить к DVD-проигрывателю, чтобы активизировать ту или иную функцию
Аккумулятор на 30 лет
Аккумулятор на 30 лет Аккумулятор на 30 лет
Американские ученые разработали аккумуляторную батарею, которая может хранить заряд в течение 30 лет. Прототип батареи
Китайцы создали дешевый компьютер для крестьян
Китайцы создали дешевый компьютер для крестьян Китайцы создали дешевый компьютер для крестьян
Китайская компания Lenovo, один из самых крупных в мире поставщиков компьютеров
У Солнца появился близнец
У Солнца появился близнец У Солнца появился близнец
Астрономы обнаружили звезду, более всего напоминающую Солнце по характеристикам
На карте Марса появилось имя российского планетолога
На карте Марса появилось имя российского планетолога На карте Марса появилось имя российского планетолога
Имя российского астронома и планетолога, профессора Василия Мороза увековечено на карте Марса
Бактерии-тунеядцы
Бактерии-тунеядцы Бактерии-тунеядцы
Некоторые бактерии отказываются работать на благо популяции и процветают за счет других ее членов
Игра на музыкальных инструментах улучшает речевой аппарат человека
Игра на музыкальных инструментах улучшает речевой аппарат человека Игра на музыкальных инструментах улучшает речевой аппарат человека
Феномен улучшения речи вследствие игры на музыкальных инструментах исследователи объясняют тем, что в развитии и тех
Новый вид анестезии: перец-чили
Новый вид анестезии: перец-чили Новый вид анестезии: перец-чили
Ученые Массачусетской больницы (Massachusetts General Hospital) предложили использовать для обезболивания родов
Одна сатана
Одна сатана Одна сатана
Исследование Йельского Университета Yale School of Public Health показало, что супруги часто копируют поведение друг друга
Крокодиловы слёзы
Крокодиловы слёзы Крокодиловы слёзы
Впервые доказано, что крокодилы действительно плачут во время приема пищи
Обнаружен большой неуклюжий динозавр
Обнаружен большой неуклюжий динозавр Обнаружен большой неуклюжий динозавр
Ученые нашли необычного динозавра с длинной шеей и большими когтями
Виды жизни на планете исчезают с огромной скоростью
Виды жизни на планете исчезают с огромной скоростью Виды жизни на планете исчезают с огромной скоростью
«Скорость исчезновения видов биологической жизни беспрецедентная в истории нашей планеты»
Компьютерный томограф
Компьютерный томограф Компьютерный томограф
Компьютерная томография произвела подлинною революцию в методах медицинской диагностики

 
  • Главные темы / архив
№082текущий номер Технологии
Биоклиматическое здание
    

    

    

    

    

 
  • Человек
  • Планета Земля
  • История изобретений
  • Компьютерный томографКомпьютерный томограф
    Компьютерная томография произвела подлинною революцию в методах медицинской диагностики
  • Чёрный ящик
  • Воля случая
  • Технологии
  • Техника
  • Космос
041