Notice: Undefined variable: 3837.7113252074 in /var/www/www-root/data/www/374.ru/tpl_text/text_picture.php on line 81
На что может быть похожа природа экстрасолнечных миров — мы можем лишь гадать. Или, теперь уже, не совсем гадать (иллюстрация Lynette R. Cook). |
То, что давно и с удовольствием расписывают фантасты, оказывается, имеет научную подоплёку. Если жизнь во Вселенной распространена, наша, покрытая зелёной растительностью планета вполне может оказаться исключением. Различные землеподобные миры должны щеголять лесами с листьями почти всех цветов радуги.
Логика проста: далеко не только хлорофилл может использоваться растением для усвоения солнечного света. А уж какое соединение будет взято жизнью за основу для обеспечения процесса фотосинтеза — зависит от эволюции. В ней же есть простое правило: растения должны постараться взять от своей звезды максимум доступной энергии.
Кианг и её коллеги смоделировали условия на экстрасолнечных планетах, похожих по основным параметрам на Землю и вращающихся вокруг звёзд разного типа, о чём подробно написали в статье в журнале Astrobiology.
Пока экстрасолнечные планеты земного типа лишь рисуют художники. Но скоро они должны попасть в объективы телескопов (иллюстрации Lynette R. Cook). |
Разные спектры солнц, различные атмосферы, химия которых увязана с параметрами родительских звёзд — всё это окажет огромное влияние на развитие фотосинтезирующих растений. Ведь распределение энергии излучения, доходящего до поверхности планеты, по спектру будет сильно отличаться у планет, живущих у звёзд разных спектральных типов (от горячих F2, через G2, K2 к очень тусклым M5), да ещё оно будет зависеть от концентрации в атмосфере кислорода, озона, водяных паров и углекислого газа.
А дальше просто — растения на таких планетах должны приспособиться к поглощению наиболее энергетически насыщенной части спектра. Где-то это будет синий цвет, где-то максимум "подкормки" придётся на инфракрасное излучение, и так далее. Каждому типу звезды и планеты исследователи сопоставили свой неповторимый, предпочтительный для фотосинтеза, участок спектра.
Цвет же листьев растения зависит от частоты света, которым оно пренебрегает (хлорофилл, скажем, поглощает в основном синий и красный цвет, но отражает зелёный). Так что на разных планетах растения будут иметь самые различные оттенки, и учёные точно могут сказать — какие именно.
Но почему синие листья деревьев и траву Нэнси считает маловероятными? Просто синий цвет, то есть свет большей частоты, несёт и больше энергии. Это важно с точки зрения эволюции живого. "Вообще, растения будут "желать" использовать синий свет, как только смогут", — поясняет эту мысль Виктория Мидоуз (Victoria Meadows) из Калифорнийского технологического института (California Institute of Technology), соавтор исследования.
Интересно, что теоретические выкладки астробиологов опираются на уже известные учёным фотосинтетические системы. К примеру, пурпурный и красный цвет имеют некоторые фотосинтезирующие бактерии и водоросли. А недавно учёные нашли в океане новую группу одноклеточных водорослей с необычным фотосинтезирующим аппаратом. Более того, на дне океана открыта бактерия, которая является фотосинтезирующей, хотя солнечный свет в такие глубины не проникает. Зато там есть инфракрасное излучение от термальных донных источников.
Как видим, даже земная жизнь предлагает нам массу решений — как усваивать свет на самых разных длинах волн. Что уж говорить об эволюции жизни внеземной. Кстати, недавнее исследование показало, что примерно треть звёзд, имеющих планетные семьи среди нашего ближнего окружения, обладает подобными Земле планетами, с жидкими водными океанами на поверхности и условиями, пригодными для зарождения жизни.
Спектральные характеристики на поверхностях планет разных звёзд. По вертикали — энергетика излучения — число фотонов, отнесённое к квадратному метру, одной секунде и длине волны; по горизонтали — длина волны в микрометрах. Отмечен видимый участок спектра. Характеристика Солнечного света на Земле отмечена жёлтой кривой. Другие цвета соответствуют звёздам разных спектральных типов (от F2V — красная линия, до M5V — зелёная). Серым и чёрным показаны линии поглощения света некоторыми микроорганизмами Земли, как пример успешной работы с инфракрасной частью спектра (иллюстрация NASA). |
Но интересно, следует ли наша земная растительность описанным выше правилам? Оказывается, не вполне. Свет, который падает на земную поверхность, "богат" зелёными лучами, но преобладающая растительность именно этот цвет как раз и не использует для фотосинтеза.
Учёные полагают, что здесь перед нами, возможно, пример не самой удачной эволюции. Однако, если говорить о солнечном свете, достигающем поверхности Земли, красный цвет здесь превосходит другие, так сказать, "массовостью" — по числу фотонов. А синий обладает большей энергией на каждый фотон (в полном соответствии с формулой Планка). Так что в выборе красного и синего цветов в качестве "питания" есть своя логика. И всё же...
Другое недавнее исследование показало, что ранняя Земля вполне могла иметь пурпурную растительность, а не зелёную как сейчас. Об этом говорит Шил Дасшарма (Shil DasSarma) из университета Мэриленда (University of Maryland).
Notice: Undefined variable: 3774.1314773548 in /var/www/www-root/data/www/374.ru/tpl_text/text_picture.php on line 81
Результаты мониторинга земной поверхности спутником SeaWiFS. По двум отдельным шкалам в искусственных цветах показано распределение хлорофилла на суше (леса) и в океане (фитопланктон). Это пример того, как техника способна улавливать спектральные следы хлорофилла и даже определять его содержание на поверхности планеты (иллюстрация SeaWiFS Project, NASA/Goddard Space Flight Center, ORBIMAGE). |
Примитивные микробы, которые использовали ретинол для усвоения солнечного света, возможно, доминировали на молодой Земле, рассуждает Дасшарма. Так что первые биологические "горячие точки" на нашей планете вполне могли отличаться фиолетовой окраской.
Получается, что развитие сначала микроорганизмов, а затем и растений, использующих для фотосинтеза хлорофилл и, следовательно, красный и синий части спектра, явилось результатом их конкурентной борьбы с "фиолетовыми" микробами. Последние просто захватили зелёную часть спектра, и потому, чтобы выжить, "опоздавшие родиться" существа с хлорофиллом внутри были вынуждены приспособиться к "поеданию" той части спектра, которая осталась свободной. В общем — борьба за ресурс в чистом виде.
Легко вообразить ситуацию, когда, скажем так, хлорофильные микроорганизмы развивались под богатым слоем микроорганизмов ретиноловых, забиравших у них зелёные лучи.
Предположение Дасшармы — только лишь предположение. Но оно имеет весомое обоснование. Так, скажем, ретинол имеет более простую структуру, чем хлорофилл. Ретинол легче воспроизвести в тех условиях, что существовали на ранней Земле (с низким уровнем кислорода). Кроме того, процесс, необходимый для того, чтобы сделать ретинол, очень подобен цепочке реакций, необходимых для синтеза жирных кислот, которая (цепочка), полагают учёные, была одним из ключевых условий для развития живых клеток. "Жирные кислоты были необходимы, чтобы сформировать мембраны в самых ранних клетках", — говорит Дасшарма.
Наконец, галобактерии, которые используют ретинол для фотосинтеза, вообще-то — вовсе не бактерии. Эта группа организмов принадлежит надцарству по имени археи, чьё происхождение уходит так далеко назад во времени, что тогда у Земли ещё даже не было кислородной атмосферы! Всё это указывает на то, что ретинол возник раньше хлорофилла.
Однако не все учёные согласны с рассуждениями Дасшармы. Геохимик Дэвид Дес Марас (David Des Marais) из исследовательского центра Эймса (Ames Research Center) отмечает, что получение максимума энергии — это как обоюдоострый меч. Излишек энергии тоже может быть вредным, как и её недостаток. И растения на нашей планете вполне могли приспособиться к получению оптимального количества энергии.
Вместе с тем, "фиолетовая ранняя Земля" Дасшармы может оказать большое влияние на поиски жизни за пределами Солнечной системы. Действительно — учёные должны представлять, что именно им следует искать. Тут мы снова возвращаемся к работе Кианг с сотоварищами. Ведь её выкладки также нацелены именно на поиск реальных экстрасолнечных миров, дающих приют жизни.
Как показал практический опыт с пепельным светом Селены, даже в отражённом Луной спектре излучения нашей планеты вполне можно найти хлорофилл — явный признак жизни. А значит, у других планет можно обнаружить спектральные подписи других веществ, ассоциируемых с разнообразными фотосинтезирующими схемами.
Опираясь на расчёты Кианг, учёные могут предсказать — какие спектральные подписи следует искать на той или иной планете, условия на которой благоприятны для развития жизни. Фактически, у учёных, в частности, в группе Мидоуз, уже есть компьютерные модели экстрасолнечных планет земного типа, которые могут показать весь спектр самой планеты, в зависимости от типа родительской звезды.
Остаётся лишь направить телескопы в нужную точку неба, и фиолетовые, зелёные или пурпурные леса, покрывающие такие планеты, дадут знать о себе.
Правда, вопрос, "обязана" ли жизнь на других планетах хоть в чём-то следовать правилам, выведенным нами исходя из изучения жизни земной, – остаётся открытым.
Хотите прокомментировать?
Кроме того...
Ученые помогли добровольцам пережить внетелесный опыт
Что нужно, чтобы человек...
Изменение климата в Арктике влияет на климат всей планеты
На ежегодной конференции...
Жизнь на Марсе может существовать в вечной мерзлоте
Группа учёных под...